COVID's arrival in Scotland

Published: 11 June 2020

Scientists sequencing the virus samples from the first confirmed cases of COVID-19 in this country have determined multiple introductions, mainly from Europe, and showed that they likely occurred prior to the first confirmed case on 1 March.

A still of Prof Thomson discussing her COVID research in relation to its introduction to Scotland on BBC Reporting Scotland

Scientists sequencing virus samples of COVID-19 in Scotland have determined multiple introductions, mainly from Europe, and showed that they likely occurred prior to the first confirmed case on 1 March.

In order to provide timely information during this critical period, the research has been published on medRxiv. It should be noted, however, that the findings have not yet been peer-reviewed.

The study investigated the emergence of the virus in this country during March. The researchers obtained full genome sequences from 466 individuals using next generation sequencing technology in real-time of 20 per cent of all confirmed diagnoses of the disease.

By looking at full genome sequences of SARS-CoV-2, the virus that causes COVID-19, they found that the virus was introduced at least 113 times during the first four weeks of the outbreak in Scotland, mainly from other European countries such as Italy, Austria, and Spain.

The confirmed travel-associated introductions of SARS-CoV-2 into Scotland predated both UK travel restrictions and extensive restrictions in other European countries.

Some of the inferred introductions of the virus were not associated with reported travel, so the authors conclude that several early introductions of the virus were undetected and quickly established community transmission in Scotland.

A dramatic shift from travel-associated to sustained community transmission was apparent from the 11th of March - 10 days after the first detected case.

Emma Thomson, Professor of Infectious Diseases at the Centre for Virus Research (CVR), said: “Our study confirms SARS-CoV-2 entered the Scottish population through at least 113 separate travel-related introductions, leading to multiple clusters of sustained community transmission.

"We identified viral lineages with no link to travel as early as three days after the first detection of infection, indicating earlier introduction to Scotland and community spread before the first detected case.

“The emergence of continental Europe as the epicentre of the global COVID pandemic was a clear driver of the Scottish outbreak, with the majority of the lineages detected in this study related to European sequences.

"Cases with links to China and other countries in South-East Asia were comparatively not detected.

“The speed at which the virus took hold in Scotland, and the UK as a whole, following multiple introductions, mainly from other European countries, was extremely rapid.

"It is possible an earlier lockdown from countries with a high burden of cases, such as Italy, and other measures such as quarantine of travellers from high-risk areas, might have prevented escalation of the outbreak and multiple clusters of ongoing community transmission."

“Tracking the new coronavirus using sequencing and phylo-epidemiological analysis may help to inform our current response and the effect of public health interventions in real-time and is a tool that can be used to understand future infectious disease outbreaks of this nature.”

The genomic sequencing of pathogens, has become a core component of the epidemiological response to virus outbreaks, for example Ebola in the Democratic Republic of Congo or Zika in South and Central America.

In this study, CVR researchers, who have been using this technology in Uganda, switched to sequencing the SARS-CoV-2 virus in Scotland, alongside NHS partners at the West of Scotland Specialist Virology Centre and the Royal Infirmary of Edinburgh.

The resulting data gives scientists enhanced knowledge of the origin and transmission of the disease, and by analysing the introductions of COVID-19 in Scotland, the information on the extent and spread of the virus can help inform targeted public health interventions.

Prof Thomson added: “As the number of cases subside in Scotland, our sequence data can provide a baseline for real-time sequencing of ongoing infections, which can act as a measure for policymakers of the success of current measures and contribute to the easing, or tightening, of public health measures.”

Dr Kate Templeton, Consultant Clinical Scientist, University of Edinburgh, said: “The introduction of this sequencing approach has been a great collaboration between the University of Glasgow and University of Edinburgh.

"The work in Edinburgh for this study was only possible from joint working with University and NHS scientists.

"The ongoing work is reliant on contributions from NHS clinical and diagnostic laboratory staff across Scotland. Their efforts have helped us build up a truly national picture of the introduction and ongoing spread of the virus, and will provide important information to guide policymakers in how to respond to this pandemic.”

During the period of sampling (February 28, 2020 to April 1, 2020), 2310 positive cases of COVID-19 were detected (Scotland Open Data, https://statistics.gov.scot). These confirmed infections were associated with 1832 hospital admissions, 207 intensive care admissions and 126 deaths.


Genomic epidemiology during the first month of SARS-CoV-2 spread in Scotland highlights the role of European travel in COVID-19 emergence

  • Ana Da Silva Filipe, James Shepherd, Thomas Williams, Joseph Hughes, Elihu Aranday-Cortes, Patawee Asamaphan, Carlos Balcazar, Kirstyn Brunker, Stephen Carmichael, Rebecca Dewar, Michael D Gallagher, Rory Gunson, Antonia Ho, Natasha Jesudason, Natasha Johnson, E. Carol McWilliam Leitch, Kathy Li, Alasdair MacLean, Daniel Mair, Sarah E. McDonald, Martin McHugh, Jenna Nichols, Marc Niebel, Kyriaki Nomikou, Richard J. Orton, Aine O'Toole, Massimo Palmarini, Yasmin A. Parr, Andrew Rambaut, Stefan Rooke, Sharif Shaaban, Rajiv Shah, Joshua B. Singer, Katherine Smollett, Igor Starinskij, Lily Tong, Vattipally B. Sreenu, Elizabeth Wastnedge, David L. Robertson, Matthew T.G. Holden, Kate Templeton, Emma C. Thomson

The study was funded by the Medical Research Council (MRC)UK Research and Innovation (UKRI), and Wellcome.

Professor Thomson is pictured discussing the research on BBC Reporting Scotland on Wednesday 10 June 2020.

Enquiries: ali.howard@glasgow.ac.uk or elizabeth.mcmeekin@glasgow.ac.uk / 0141 330 6557 or 0141 330 4831

First published: 11 June 2020